Test Method for Analyzing Liquid Particle Counts

This test method is used to analyze the mobile particle contaminants from cleanroom gloves.

1. Scope

- 1.1. The test method covers the average particulate contamination found on gloves designated for cleanroom applicability.
- 1.2. The average contaminant concentration will be reported in particles per cm² in two ways:
 - 1.2.1. By size grouping, 0.5 to 1.0 microns, 1.0 to 2.0 microns, 2.0 to 5.0 microns, 5.0 to 10.0 microns, 10.0 to 20.0 microns, greater than 20.0 microns, and a total particle count greater than 0.5 microns.
 - 1.2.2. Statistical analysis of each grouping consisting of Minimum Value, Maximum Value, Standard Deviation, and Average Value, for each group of individual gloves.
- 1.3. The safe and proper use of gloves is beyond the scope of this test method.
- 1.4. This test method does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this Test Method to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1. IEST-RP-CC005.3 Recommended Practice for Gloves and Finger Cots Used in Cleanrooms and Other Controlled Environments
- 2.2. Work Instruction

3. Apparatus

- 3.1. Analytical Balance, capable of readability and repeatability to 0.1 mg
- 3.2. Particle Measuring Systems CLS-900 Liquid Particle Counting System
- 3.3. 2000 mL glass beaker or 1000mL glass conical flask
- 3.4. Stainless Steel Forceps, 10" length
- 3.5. 250 ml Volumetric Flask
- 3.6. 500 ml Volumetric Flask
- 3.7. High Purity Deionized Water System, capable of producing 18.2 MOhm quality water
- 3.8. Point of Use Filter, 0.2 micron size
- 3.9. Orbital Shaker, 3/4" orbit, capable of 200 rpm
- 3.10. Circular Die, 1.5 inch diameter, calibrated

4. Procedure

- 4.1. Test Preparation
 - 4.1.1. Prior to extraction, all Erlenmeyer flasks will be cleaned no less than five times with high purity deionized water filtered to 0.2 microns at point of use.
 - 4.1.2. All related equipment (forceps, volumetric flasks, etc.) must be rinsed with high purity deionized water prior to use.

4.2. Extraction

- 4.2.1. Randomly pull a glove from the package.
- 4.2.2. Place glove finger-first into the one liter Erlenmeyer flask and hold open by cuff using the rinsed forceps.
- 4.2.3. Empty into the inside of the glove 500 ml high purity filtered deionized water.
- 4.2.4. Allow the glove to settle into the Erlenmeyer flask.
- 4.2.5. Place an additional 250 ml high purity filtered deionized water over the glove within the Erlenmeyer flask.
- 4.2.6. Allow the Erlenmeyer flask with glove to agitate on the shaker for 10 minutes \pm 10 seconds at a rate of 150 rpm \pm 10 rpm.
- 4.2.7. Using clean tongs, immediately remove the glove from the container. Drain any trapped liquid into the beaker by manipulating the fingers on the glove, with the tongs
- 4.2.8. Dispose of the glove.
- 4.2.9. Repeat the extraction two additional times to complete the set.
- 4.2.10. Prepare a process blank, using all the steps in section 4.2, without placing the glove in the Erlenmeyer flask.

- 4.3. Measurement
 - 4.3.1. Follow the Work Instruction for the Liquid Particle Counter for analyzing the solutions.
- 4.4. Glove Surface Area
 - 4.4.1. Pull three gloves from the production package and weigh to the nearest 0.1 mg.
 - 4.4.2. Record as A.
 - 4.4.3. Cut the 3 gloves with square die (5X5 cm.) by wheel cutter at palm. This will give you six cutout sections.
 - 4.4.4. Weight the six cut-out sections. Record this as B.
 - 4.4.5. Calculate the surface area of the glove using the following equation :

5. Calculations

5.1. Calculate counts/cm² by channel size using the following equation:

$$\frac{\text{(Sample (counts/mL)-Blank (Counts/mL) x Extraction volume (mL) x DF}}{\text{Surface area (in cm}^2)}$$

5.2. Total Counts/cm
2
: = $\sum AllChannelSizes$

6. Reporting

- 6.1. The final report should include the Lot Number, Batch number, Product Description, Part Number, and any other pertinent information about the sample, as well as the final calculated counts/cm² by channel size and a total counts/cm² greater than 0.5 microns.
- 6.2. Statistics will be calculated and reported on sample sizes greater than three.

Test Method for Analyzing Extractables

This test method is used to analyze the soluble ionic extractable contaminants from cleanroom gloves.

1. Scope

- 1.1. The test method covers the average ionic contamination found on gloves designated for cleanroom applicability.
- 1.2. The average contaminant concentration will be reported in one of two ways:
 - 1.2.1. Micrograms of ionic contaminant per gram of glove weight (ug/g), also described as ppm.
 - 1.2.2. Micrograms of ionic contaminant per square centimeter of glove area (ug/cm²)
- 1.3. This test method does not cover contaminants that are insoluble in water, or organic macromolecules.
- 1.4. The safe and proper use of gloves is beyond the scope of this test method.
- 1.5. This test method does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this Test Method to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1. IEST-RP-CC005.2 Recommended Practice for Gloves and Finger Cots Used in Cleanrooms and Other Controlled Environments.
- 2.2. Work Instruction WI 10-05-26, Work Instruction for Performing Ion Chromatography Analysis of Gloves

3. Apparatus

- 3.1. Analytical Balance, capable of readability and repeatability to 0.1 mg
- 3.2. Ion Chromatograph
- 3.3. Extraction Containers, 1 liter capacity, HDPE with screw type lids
- 3.4. Stainless Steel Forceps, 10" length
- 3.5. 500 ml Volumetric Flask
- 3.6. High Purity Deionized Water System, capable of producing 18.0 MOhm quality water
- 3.7. Point of Use Filter, 0.1 micron size
- 3.8. Circular Die, 1.5 inch diameter, calibrated

4. Procedure

4.1. Test Preparation

- 4.1.1. Prior to extraction, all extraction containers will be cleaned using high purity deionized water high purity deionized water filtered to 0.2 microns at point of use.
- 4.1.2. All related equipment (forceps, volumetric flasks, etc.) must be rinsed with high purity de-ionized water prior to use.

4.2. Extraction

- 4.2.1. Randomly pull a glove from the package.
- 4.2.2. Place glove finger-first into the one liter Erlenmeyer flask and hold open by cuff using the rinsed forceps.
- 4.3. Empty into the inside of the glove approximately 250 ml high purity filtered deionized water.
- 4.4. Allow the glove to settle into the extraction container.
- 4.5. Pour remaining 250 ml high purity filtered deionized water over the glove within the extraction container.
- 4.6. Place the lid upon the container and seal tightly.
- 4.7. Gently swirl the container to ensure that all surfaces of the glove are wetted.
- 4.8. Allow the glove to extract in the deionized water for at least 10 minutes, but no longer than 11 minutes.
- 4.9. Remove the glove by the fingers, allowing most of the water trapped in the fingers to drain back in to the extraction container.
- 4.10. Dispose of the glove.
- 4.11. Repeat extraction two additional times to complete the set.
- 4.12. Prepare a sample blank, using all the steps in section 2, without placing the glove in the extraction container.

4.13. Measurement

- 4.13.1. Follow the guidelines for the Ion Chromatograph for analyzing aqueous solutions.
- 4.14. Glove weight and surface area
 - 4.14.1. Pull three gloves from the production package and weigh to the nearest 0.1 mg.
 - 4.14.2. Record as A.
 - 4.14.3. Cut the 3 gloves with square die (5X5 cm.) by wheel cutter at palm. This will give you six cut-out sections.
 - 4.14.4. Weight the six cut-out sections. Record this as B.
 - 4.14.5. Calculate the surface area of the glove using the following equation:

Surface area =
$$\frac{A \times 5 \times 5 \times 4}{B}$$

5. Calculations

5.1. Once the data output from the Chromatograph has been reviewed for errors, calculate the following:

5.1.1. ug/g (ppm) contamination:
$$= \frac{(AnalyteConc.)*(500ml)}{GloveWeight}$$

5.1.2. ug/cm² contamination: =
$$\frac{(AnalyteConc.)^{*}(500ml)}{SurfaceArea}$$

6. Reporting

6.1. The final report should include the Lot number, Batch number, Product description, Part number, and any other pertinent information about the sample, as well as the final calculated contaminant concentration in ug/g and ug/cm².

Test Method for Analyzing Bacterial Endotoxins

This test method is used to detect or quantify endotoxins in sterile medical and cleanroom gloves

1. Scope

- 1.1 The test method is a kinetic turbidimetric method used to detect or quantify Gramnegative bacteria using Limulus Amoebocyte Lysate (LAL) from horseshoe crab (*Limulus polyphemus or Tachypleus tridentatus*).
- 1.2 The average contaminant concentration will be reported in endotoxin units per device (pair)
- 1.3 This procedure is an overview of the Kimberly-Clark Internal procedure
- 1.4 The safe and proper use of gloves is beyond the scope of this test method
- 1.5 This test method does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this Test Method to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2 Referenced Documents

- 2.1 U.S. Pharmacopoeia USP 24 NF 19, Second Supplement, Bacterial Endotoxin Test.
- 2.2 ASTM D7102-10 Standard Guide for Determination of Endotoxin on Sterile Medical Gloves.

3 Apparatus

- 3.1 Microplate reader
- 3.2 Computer and windows software
- 3.3 Hot air oven capable of 250C
- 3.4 Refrigerator capable of 5C
- 3.5 Freezer capable of -10 to -20C
- 3.6 Vortex mixer
- 3.7 Incubator capable of 180 rpm, 35C
- 3.8 Timer
- 3.9 Micropipettor: single and 8 channel
- 3.10 Laminar flow hood
- 3.11 96 well flat bottom microplate, sterile, non-pyrogenic, individually wrapped
- 3.12 Sterile, non-pyrogenic pipette tips
- 3.13 Aluminum foil
- 3.14 Glass beaker 600 mL, 1000 mL
- 3.15 Glass tube
- 3.16 Pyrogent®-5000 test kit catalog N383 or N384 (BioWhittaker, Inc)
- 3.17 Pyrogenic-free water